High Availbility

OS & Virtualization

Saturday, August 31, 2019

Response-Time Analysis Made Easy

System-Level Response-Time Analysis

 DBAs typically want answers to these questions:
  • In general, how well is my database running? What defines efficiency?
  • What average response time are my users experiencing?
  • Which activities affect overall response time the most?

1) how well, in general, a database is running can be obtained by issuing this query in Oracle Database 10g:
                               
select  METRIC_NAME,
        VALUE
from    SYS.V_$SYSMETRIC
where   METRIC_NAME IN ('Database CPU Time Ratio',
                        'Database Wait Time Ratio') AND
        INTSIZE_CSEC = 
        (select max(INTSIZE_CSEC) from SYS.V_$SYSMETRIC); 

METRIC_NAME                         VALUE
------------------------------ ----------
Database Wait Time Ratio                6
Database CPU Time Ratio                94

You can also take a quick look over the last hour to see if the database has experienced any dips in overall performance by using this query:
                               
select  end_time,
        value
from    sys.v_$sysmetric_history
where   metric_name = 'Database CPU Time Ratio'
order by 1;

END_TIME                  VALUE
-------------------- ----------
22-NOV-2004 10:00:38         98
22-NOV-2004 10:01:39         96
22-NOV-2004 10:02:37         99
22-NOV-2004 10:03:38        100
22-NOV-2004 10:04:37         99
22-NOV-2004 10:05:38         77
22-NOV-2004 10:06:36        100
22-NOV-2004 10:07:37         96
22-NOV-2004 10:08:39        100
.

And, you can get a good idea of the minimum, maximum, and average values of overall database efficiency by querying the V$SYSMETRIC_SUMMARY view with a query such as this:
                               
select  CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then 'SQL Service Response Time (secs)'
            WHEN 'Response Time Per Txn' then 'Response Time Per Txn (secs)'
            ELSE METRIC_NAME
            END METRIC_NAME,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((MINVAL / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((MINVAL / 100),2)
            ELSE MINVAL
            END MININUM,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((MAXVAL / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((MAXVAL / 100),2)
            ELSE MAXVAL
            END MAXIMUM,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((AVERAGE / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((AVERAGE / 100),2)
            ELSE AVERAGE
            END AVERAGE
from    SYS.V_$SYSMETRIC_SUMMARY 
where   METRIC_NAME in ('CPU Usage Per Sec',
                      'CPU Usage Per Txn',
                      'Database CPU Time Ratio',
                      'Database Wait Time Ratio',
                      'Executions Per Sec',
                      'Executions Per Txn',
                      'Response Time Per Txn',
                      'SQL Service Response Time',
                      'User Transaction Per Sec')
ORDER BY 1

METRIC_NAME                       MINIMUM    MAXIMUM    AVERAGE
------------------------------ ---------- ---------- ----------
CPU Usage Per Sec                       0          7          1
CPU Usage Per Txn                       1         29          8
Database CPU Time Ratio                61        100         94
Database Wait Time Ratio                0         39          5
Executions Per Sec                      2         60          8
Executions Per Txn                     16        164         41
Response Time Per Txn (secs)            0        .28        .08
SQL Service Response Time (sec          0          0          0
User Transaction Per Sec                0          1          0


DBA will then want to know what types of user activities are responsible for making the database work so hard.

select  case db_stat_name
            when 'parse time elapsed' then 
                'soft parse time'
            else db_stat_name
            end db_stat_name,
        case db_stat_name
            when 'sql execute elapsed time' then 
                time_secs - plsql_time 
            when 'parse time elapsed' then 
                time_secs - hard_parse_time
            else time_secs
            end time_secs,
        case db_stat_name
            when 'sql execute elapsed time' then 
                round(100 * (time_secs - plsql_time) / db_time,2)
            when 'parse time elapsed' then 
                round(100 * (time_secs - hard_parse_time) / db_time,2)  
            else round(100 * time_secs / db_time,2)  
            end pct_time
from
(select stat_name db_stat_name,
        round((value / 1000000),3) time_secs
    from sys.v_$sys_time_model
    where stat_name not in('DB time','background elapsed time',
                            'background cpu time','DB CPU')),
(select round((value / 1000000),3) db_time 
    from sys.v_$sys_time_model 
    where stat_name = 'DB time'),
(select round((value / 1000000),3) plsql_time 
    from sys.v_$sys_time_model 
    where stat_name = 'PL/SQL execution elapsed time'),
(select round((value / 1000000),3) hard_parse_time 
    from sys.v_$sys_time_model 
    where stat_name = 'hard parse elapsed time')
order by 2 desc;


DB_STAT                          TIME_SECS       PCT_TIME
-----------------------------    ---------       --------
sql execute elapsed time         13263.707       45.84                                 
PL/SQL execution elapsed time    13234.738       45.74                                 
hard parse elapsed time           1943.687        6.72                                  
soft parse time                    520.584         1.8
.

It's much easier to tell now that the bulk of overall wait time is due, for example, to user I/O waits than to try to tally individual wait events to get a global picture. As with response-time metrics, you can also look back in time over the last hour with a query like this one:
                               
select  to_char(a.end_time,'DD-MON-YYYY HH:MI:SS') end_time,
        b.wait_class,
        round((a.time_waited / 100),2) time_waited 
from    sys.v_$waitclassmetric_history a,
        sys.v_$system_wait_class b
where   a.wait_class# = b.wait_class# and
        b.wait_class != 'Idle'
order by 1,2;

END_TIME             WAIT_CLASS      TIME_WAITED
-------------------- --------------- -----------
22-NOV-2004 11:28:37 Application               0
22-NOV-2004 11:28:37 Commit                  .02
22-NOV-2004 11:28:37 Concurrency               0
22-NOV-2004 11:28:37 Configuration             0
22-NOV-2004 11:28:37 Network                 .01
22-NOV-2004 11:28:37 Other                     0
22-NOV-2004 11:28:37 System I/O              .05
22-NOV-2004 11:28:37 User I/O                  0
.

You can, of course, just focus on a single SID with the V$SESS_TIME_MODEL view and obtain data for all statistical areas of a session. You can also view current session wait activity using the new wait classes using the following query:
                               
select  a.sid,
        b.username,
        a.wait_class,
        a.total_waits,
        round((a.time_waited / 100),2) time_waited_secs
from    sys.v_$session_wait_class a,
        sys.v_$session b
where   b.sid = a.sid and
        b.username is not null and
        a.wait_class != 'Idle'
order by 5 desc;

SID USERNAME   WAIT_CLASS      TOTAL_WAITS TIME_WAITED_SECS
--- ---------- --------------- ----------- ----------------
257 SYSMAN     Application          356104            75.22
255 SYSMAN     Commit                14508            25.76
257 SYSMAN     Commit                25026            22.02
257 SYSMAN     User I/O              11924            19.98
.
.
.

you can use the following query. In the example below, we're looking at activity from midnight to 5 a.m. on November 21, 2004, that involved user I/O waits:
                               
select  sess_id,
        username,
        program,
        wait_event,
        sess_time,
        round(100 * (sess_time / total_time),2) pct_time_waited
from
(select a.session_id sess_id,
        decode(session_type,'background',session_type,c.username) username,
        a.program program,
        b.name wait_event,
        sum(a.time_waited) sess_time
from    sys.v_$active_session_history a,
        sys.v_$event_name b,
        sys.dba_users c
where   a.event# = b.event# and
        a.user_id = c.user_id and
        sample_time > '21-NOV-04 12:00:00 AM' and 
        sample_time < '21-NOV-04 05:00:00 AM' and
        b.wait_class = 'User I/O'
group by a.session_id,
        decode(session_type,'background',session_type,c.username),
        a.program,
        b.name),
(select sum(a.time_waited) total_time
from    sys.v_$active_session_history a,
        sys.v_$event_name b
where   a.event# = b.event# and
        sample_time > '21-NOV-04 12:00:00 AM' and 
        sample_time < '21-NOV-04 05:00:00 AM' and
        b.wait_class = 'User I/O')
order by 6 desc;

SESS_ID USERNAME PROGRAM    WAIT_EVENT                SESS_TIME PCT_TIME_WAITED
------- -------- ---------- ------------------------- ---------- -------------
    242 SYS      exp@RHAT9K db file scattered read       3502978         33.49
    242 SYS      oracle@RHA db file sequential read      2368153         22.64
    242 SYS      oracle@RHA db file scattered read       1113896         10.65
    243 SYS      oracle@RHA db file sequential read       992168          9.49

                            
The Oracle Database 10g V$ACTIVE_SESSION_HISTORY view comes into play here to provide an insightful look back in time at session experiences for a given time period. This view gives you a lot of excellent information without the need for laborious tracing functions. We'll see more use of it in the next section, which deals with analyzing the response times of SQL statements.
SQL Response-Time Analysis
Examining the response time of SQL statements became easier in Oracle9i, and with Oracle Database 10g, DBAs have many tools at their disposal to help them track inefficient database code.
Historically the applicable V$ view here has been V$SQLAREA. Starting with Oracle9i, Oracle added the ELAPSED_TIME and CPU_TIME columns, which have been a huge help in determining the actual end user experience of a SQL statement execution (at least, when dividing them by the EXECUTIONS column, which produces the average amount of time per execution).
In Oracle Database 10g, six new wait-related and timing columns have been added to V$SQLAREA:
  • APPLICATION_WAIT_TIME
  • CONCURRENCY_WAIT_TIME
  • CLUSTER_WAIT_TIME
  • USER_IO_WAIT_TIME
  • PLSQL_EXEC_TIME
  • JAVA_EXEC_TIME
The new columns are helpful in determining, for example, the amount of time that a procedure spends in PL/SQL code vs. standard SQL execution, and if a SQL statement has experienced any particular user I/O waits. For example, a query you could use to find the top five SQL statements with the highest user I/O waits would be:
                               
select *
from
(select sql_text,
        sql_id,
        elapsed_time,
        cpu_time,
        user_io_wait_time
from    sys.v_$sqlarea
order by 5 desc)
where rownum < 6;

SQL_TEXT                  SQL_ID       ELAPSED_TIME CPU_TIME  USER_IO_WAIT_TIME
------------------------- ------------ ------------ ---------- ---------------
select /*+ rule */ bucket db78fxqxwxt7     47815369   19000939            3423
SELECT :"SYS_B_0" FROM SY agdpzr94rf6v     36182205   10170226            2649
select obj#,type#,ctime,m 04xtrk7uyhkn     28815527   16768040            1345
select grantee#,privilege 2q93zsrvbdw4     28565755   19619114             803
select /*+ rule */ bucket 96g93hntrzjt      9411028    3754542             606
                            
Of course, getting the SQL statements with the highest elapsed time or wait time is good, but you need more detail to get to the heart of the matter—which is where the V$ACTIVE_SESSION_HISTORY view again comes into play. With this view, you can find out what actual wait events delayed the SQL statement along with the actual files, objects, and object blocks that caused the waits (where applicable).
For example, let's say you've found a particular SQL statement that appears to be extremely deficient in terms of user I/O wait time. You can issue the following query to get the individual wait events associated with the query along with the corresponding wait times, files, and objects that were the source of those waits:
                               
select event,
        time_waited,
        owner,
        object_name,
        current_file#,
        current_block# 
from    sys.v_$active_session_history a,
        sys.dba_objects b 
where   sql_id = '6gvch1xu9ca3g' and
        a.current_obj# = b.object_id and
        time_waited <> 0;

EVENT                     TIME_WAITED OWNER  OBJECT_NAME           file  block
------------------------- ----------- ------ --------------------- ---- ------
db file sequential read         27665 SYSMAN MGMT_METRICS_1HOUR_PK    3  29438
db file sequential read          3985 SYSMAN SEVERITY_PRIMARY_KEY     3  52877
                            
Of course, you can use V$ACTIVE_SESSION_HISTORY in a historical fashion to narrow down unoptimized SQL statements for a particular time period. The point is that Oracle Database 10g makes it a lot easier to conduct response-time analysis on SQL statements with simplified data dictionary views, as opposed to the time-consuming trace-and-digest method.
Conclusion

No comments: